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Study of fringing-field effects on the capacitance of a dielectric disk with a circular conducting hole
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The capacitance of a thin dielectric sheet with a conducting hole is strongly influenced by the fringe
effects around the edges of the hole, particularly when the hole size beomes comparable to the size of the
sheet. We present here a numerical study of this situation. By a finite-difference scheme, the potential,
field, and surface-charge densities in and around the hole are calculated. The sharp edge of the hole
represents a singularity, and the asymptotic behavior of the field and surface-charge densities in the vi-
cinity of the singular point are discussed both analytically and numerically. It is found that the scaled
difference between a numerical simulation and the simple parallel-plate-capacitor formula changes with
the relative size of the hole in a composite power-law relation.

PACS number(s): 41.20.Cv

I. INTRODUCTION

There are many practical situations in which a
knowledge of the correction to the formula for simple
parallel-plate capacitance because of the nonuniform
charge distribution near edges or holes is needed. The
simple formula for parallel-plate capacitance is

C=eoed§ , (1)

where €, is the relative dielectric constant of the medium
between the plates, €, is the permittivity of the vacuum, S
is the area of the plates, and d is the distance between
them. In general, when V'S >>d, the correction due to
the fringe field can be neglected. However, when this
condition is not satisfied, or when the correction has to be
taken into account even when it is small, then it becomes
interesting to calculate the correction to Eq. (1) due to
the fringing field near an edge. There have been some ap-
proximate treatments that take the nonuniform distribu-
tion of charge near the edge into account, but they pro-
vide only a first-order correction [1]. An alternative ap-
proach involves finding the potential and charge distribu-
tion by solving the appropriate boundary problem.
Different boundary geometries will lead to different
configurations of the fringing field, and except in a few
cases there is no simple or even possible analytical solu-
tion, and therefore the numerical methods must be used.
The boundary problem we have encountered is that in-
volving a circular dielectric disk with a circular hole at
its center embedded in a conducting medium, where the
hole is the only current pathway between the upper and
the lower regions, as shown in Fig. 1. There are several
potential applications where this geometry occurs. In
biology, filters made from polymeric or ceramic materials
that have many small holes are used for species separa-
tion, and for embedding cells and dielectric particles. In
electrolyte-solution systems the field distribution in and
around the hole is of interest. Small holes can also be
used for controlled effusion of neutral and charged
species in both liquid and gaseous media. Usually it is
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very difficult or impossible to solve analytically boundary
problems that involve some kind of discontinuity in
geometry, such as edges and corners, or in dielectric
properties of media as in inhomogeneous systems. Al-
though the conformal-mapping method is helpful in solv-
ing for the fringing field in some simple two-dimensional
(2D) boundary problems by transforming the boundary to
a soluble form, unfortunately, this is only applicable in a
limited number of cases [2].

Electrically, a dielectric disk can be modeled as a capa-
citor, which is perfectly described by Eq. (1) if there are
no holes in the disk. However, when there is a hole at its
center, the disk, including the conducting hole, has to be
modeled as a capacitor in parallel with a resistor. The
hole will affect the potential and charge distribution
around it, and the difference between the true value of the
capacitor and Eq. (1) increases as the relative size of the
hole increases. In what follows we will determine the
effect on the capacitance of a finite disk caused by a small
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FIG. 1. A schematic diagram of the geometry studied. A
dielectric disk is embedded in a conducting cylinder, and a hole
in the disk is the only current pathway between the upper and
lower conducting regions.
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hole at its center. We neglect fringing fields at the outer
edge of the disk as, in practice, we view the disk as a cir-
cular region that is contiguous with an effectively infinite
dielectric slab. Our final result will, therefore, allow us to
determine the capacitance per unit area of a large dielec-
tric slab, through which there are many identical circular
holes. The separation of the individual holes is assumed
to be large enough so that each provides an independent
fringing-field correction to the capacitance.

In this study we will determine the distribution of po-
tential, field, and surface-charge densities along the inter-
face between the dielectric and conducting medium, and
finally evaluate a correction to the ideal capacitance of
the disk. Because a regular boundary geometry is in-
volved, the finite-difference (FD) method is very suitable.
The FD method is an extremely useful tool for solving
partial differential equations and has been intensively
used in many areas of science and engineering because it
is both simple to implement and reliable. In this paper
we present a FD scheme to solve this specific boundary
problem on a uniform mesh. The effect of the singularity
at the hole edge is also discussed. Adjustment of the size
of the hole shows that the relative difference between the
capacitance calculated numerically and that determined
from Eq. (1) changes with the ratio of hole area to total
area in a composite power-law relation.

II. THE BOUNDARY PROBLEM

This inhomogeneous system consists of two homogene-
ous regions: a conducting medium and a dielectric disk.
It is well known that in order to determine the potential
distribution of a steady current distribution in an inho-
mogeneous region, where there are no sources and sinks,
it is necessary to solve the current continuity equation,

V-(oV¢)=0, (2)

where ¢ is the potential function, and o is the conductivi-
ty. In each of the homogeneous media, Eq. (2) can be re-
placed by the Laplace equation V2¢=0. Because of the
symmetry about the center plane and z axis of the system,
we only need to deal with the first quadrant. We also
confine our discussion to a unit domain with 1 cm length
in both r and z directions as shown in Fig. 1, and assume
V,>V,. For the sake of simplicity, and without loss of
generality, ¢ is scaled into a dimensionless form 3 by the
following relation:

$—V,

—1. 3
V.7, (3)

=2

Because the capacitance is determined from an integra-
tion of the ratio of the surface-charge density to the asso-
ciated potential values on the surface of the dielectric,
this transformation will not affect the result for the ca-
pacitance. There is no current passing across the boun-
daries at r =1 cm and 0, and it is also reasonable to as-
sume that the field is in the z direction at » =1 cm in the
dielectric since we are only interested in the fringing field
around the hole. With the above conditions, we have the
following governing equation for the scaled potential
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function 1 in the cylindrical coordinate system:

2y 2y
9 +lg'£+a =0, 0<r,z=<1, 4)
ar? r or  93z?

d a
¢|z=1=1’ ¢|z=o=0, ‘5{{",:020, 3’?|,=1=0, (5)

which is a two-dimensional elliptic equation with com-
bined Dirichlet and Neumann boundary conditions.
Usually, when a function is cast in a dimensionless form,
all unnecessary symbols and units are removed and the
problem appears in a very general and simple form. Be-
sides the continuity of the potential function, the bound-
ary conditions at the interface between the conducting
medium and dielectric disk are

o] (] o
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where subscript ¢ and d denote conducting medium and
dielectric, respectively; p, is the scaled surface-charge
density at the interface, and n is a unit vector with a
direction defined normal to the interface and outwards
from the dielectric. Because 0 ;=0 and 0,70 at the in-
terface, we have
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where the first of these relations is to be used with Eqgs.
(4) and (5) to solve ¥, and the second one is for finding the
surface-charge densities at the interface.
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FIG. 2. Schematic diagrams for finite-difference lattice in
(r,z) plane: (a) the standard five-point discretization for the
nodes not at the interface and the boundary; (b) discretization
for the nodes on the z axis but not at the corners; (c) discretiza-
tion for the corner node (N,,M,); (d) discretization for the
nodes on the top surface of the disk: the open circle is an imagi-
nary node; (e) discretization for the nodes on the wall of the
hole: the open circle is an imaginary node; (f) discretization for
the apex node of the edge (N,,M,, ) along the 45° direction.
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III. FINITE-DIFFERENCE DISCRETIZATION

The fundamental principle of the FD method for solv-
ing differential equations is that derivatives are replaced
by difference expressions that use truncated Taylor series.
The solution is obtained with the following steps: (i)
discretizing the physical region into a finite set of grid
nodes; (ii) transforming the governing equation and the
boundary conditions into finite-difference forms at each
node, which gives a set of linear equations; and (iii) solv-
J

1 1
(Ar)?  2(i —1)(Ar)?

P(i,j—1)

1
I P
(Az)zl v LD

+Y(i +1,5) [

where i and j are the node coordinates, and Ar and Az are
the grid steps in the r and z directions, respectively; Ar
and Az are given by

1

1
= A = em———— ’
Ar z M1

N—1’

)

where N, and M, are the total node numbers in the r and
z directions, respectively. We choose nodes (1, ), where
j71, and M,, and (N,,M,) as examples to show the
discretization of the governing equation combined with
the boundary conditions. At r =0, the z axis, but not at
the corners, four points are involved, as shown in Fig.
2(b),

1 2 2
1,/ —1 —(1,] +
AR A el B ALl ey
Fp2, ) | —2— |+t j+1) | —— |=0. «0)
A2 ’ (Az)? '

For r and z =1, three points are involved, as shown in
Fig. 2(c),
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The range occupied by the dielectric is i >N, and
Jj<M,. Because the interface nodes between the con-
ducting medium and the dielectric present a singularity
in the conductivity derivative, the first equation of Eq.
(7), rather than Eq. (2), should be employed for these
nodes. Equation (7) shows the discontinuity of dy/dn at
the interface, therefore in this situation special treatment
is required. There are several methods for dealing with
interface nodes between two different media [3,4]. We
have developed a very simple method that uses an imagi-
nary node between the interface node and its immediate
neighbor node beyond the disk, as shown in Figs. 2(d) and
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ing these linear equations to get the numerical solutions
on the nodes. Different methods of truncation will lead
to different forms for the FD operators, which give
different orders of approximation for the differential
equations. We apply the most common second-order
center-difference method, with which there are five points
involved in each of the linear equations if the nodes are
not at a boundary or at the interface between the different
media. Figure 2(a) shows a node and its immediate four
neighbors. In this way Eq. (4) can be written as

2 2
—+__.__
(Ar)?*  (Az)?
1 1 1
i j+1 =0,
(Ar? 2(i—1)(Ar)2l vihg )l(Az)2 ®

r

2(e). It is a good approximation that the normal deriva-
tive on the interface in the conducting side can be re-
placed by the FD equation at this imaginary node. So,
finally, for the nodes at the surface of the disk, we have

U, M, +1)—¢(1,M,)=0, i>N, , (12)

which is shown in Fig. 2(d). For the nodes on the wall of
the hole, shown in Fig. 2(e),

Y(N,, ) — YN, —1,j)=0, j<M, . (13)

Nevertheless, the normal direction of the apex of the
edge (N,,M,) is not as well defined as that on the flat
surface. Because an infinitely sharp edge does not exist in
practice, it is reasonable to assume that the normal direc-
tion is along the 45° line of the corner shown in Fig. 2(f).
Application of the boundary condition on this edge node
gives

mtﬁ(Np*l,Mp)—lﬁ(Np,Mp)
48k (N,,M,+1)=0, (14)
A11+A12¢ P T

where Al; and Al, are defined as

:_:_AL__ Al = Az
V2sin(r/4+B)" 2 V2sin(37/4—B)

where 8= tan" (Az/Ar). There are only N, equations
associated with boundary condition ¢|z=1=1, e.g., Eq.
(11), which have a nonzero right side, i.e.,
b(i,M,)=— 1/(Az)? for all others b (i,7)=0. To summa-
rize: to this point the governing equation and boundary
conditions have been expressed in terms of a set of linear
equations

Al

(15)

IV. MATRIX FORMULATION
AND GAUSS-SEIDEL ITERATION

For compactness, ¥(i,j) and b(i,j) are transformed
into n-dimensional vectors, ¥, and b,, where we denote
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the nodes with a single integer, i.e., Kk =(j —1)N,+i, so
that each node is uniquely represented. The linear equa-
tions discussed above can then be written in matrix form
as A-¥Y =B, where A is the n Xn coefficient matrix, with
n =N,M,. The structure of the sparse matrix 4 involves
three diagonal blocks, a structure often seen in FD
methods. Because of the presence of the interface, many
of the elements in these three blocks are zero: the num-
ber of nonzero elements in the matrix is
n,=5M,N,—2M,—9N,+7M, +3N,+11, which is
much smaller than n?=(N,M,)’.. To save computer
storage space, a vector is generally formed that contains
all the nonzero elements of the sparse matrix, and two in-
teger vectors that give information of column and row for
each entry of the vector. Although several software
packages have been developed for solving sparse matrix
problems [5], because of the well-defined structure of the
matrix 4, we have developed our own software to solve
these specific sparse linear equations without using two-
index vectors. Usually for large sparse systems, an itera-
tive method is efficient in terms of both computer storage
and computational time. An iterative method for solving
the n Xn linear system starts with an initial approxima-
tion ¥'? to the solution W, and generates a sequence of
vectors W'V W@ wl®) that converges to W. The
Gauss-Seidel method uses the most recently found y;

(j¥=1) at each iteration to give a new ;,
1]
Y= b= 3 ay¥ - /aii ) (16)

n
S g S_k -1
ji=1 j=i+1

where ¢, a;j, and b; are coefficients of ¥, 4, and B, re-
spectively, and the superscripts k and k —1 denote the
iteration number of the solution. The summations on the
right-hand side of Eq. (16) will be substantially reduced
because of the sparsity of the matrix. In practice it is
desirable that the coefficient matrix 4 be diagonally dom-
inant, which ensures that the iterative methods converge
[6]. In our case, most of the equations are diagonally
dominant except for those involving interface nodes, Egs.
(12) and (13), which are the primary reasons for slow con-
vergence of this problem.

V. RESULTS AND DISCUSSION

Equidistant nodes are taken which give uniformly dis-
tributed approximation values over the whole region, and
all the calculations are done using a 101 X99 grid, which
gives Az=Ar=0.1 mm. Potential distributions have
been calculated for 11 different radii of the hole in the
disk, from which we choose the 0.5-mm hole as an exam-
ple to show our results. Figure 3 shows the current and
equipotential lines in the whole region, which is con-
sistent with an intuitive physical picture. In the dielec-
tric, the field becomes more uniform when it is away from
the apex. The distributions of the current flux in the r
and z directions, j, and j,, are shown in Figs. 4(a) and
4(b), respectively, where we have assumed o =1. There is
clearly a singularity at the node (N,,M,), where a very
sharp peak is found. Figure 4(c) shows the spatial varia-
tion of the magnitude of the field E,,, where we also see a
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FIG. 3. The equipotential and current lines in the first qua-
drant for a disk with a 5-mm-radius hole at the center, and a
half thickness of 1 mm. The potential difference between any
two neighboring equipotential lines is the same.

marked peak at (N,,M,): the field inside the dielectric
but away from the apex is smoother and stronger.
Theoretically, near the apex of the edge the problem can
be approximated as a 2D problem, and the potential
function in the conducting medium can be written as

Y=9(N,,M,)+Dp™ cos(m0), 0<6=<irm, (17)

where p is the distance from the apex, and 6 is measured
from the top surface of the disk. We only take the lowest
positive power of p into account because p is very small.
With the boundary conditions at the interface, i.e., j,=0
when 6=0 and 37/2, we have an m =2. D, is a con-
stant and can only be determined from the overall bound-
ary conditions, in which we are not interested. The sign
of D, can be determined easily: when =0, 3 increases
while p increases, so D;>0. The current flux function

can be easily found from j=—o V¥,
jp,=—2D,op"’cos(20), jo=21D,op 'sin(%0),

(18)

The potential function in the dielectric in the vicinity of
the apex can be written as

$=y(N,,M,)+D,p"sin(n60+D;), —=<0<0. (19)
pMp P 2

With the condition of continuity of the potential function
at the interface, we have n =§, D,=2D,, and D;=m/6,
which gives the field function as

13 |2 T
Ep—‘“%Dlp 17 sin §6+_6—
(20)
_ 2 T
Ee——%Dlp 1/3(:08 §9+'gl .
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Examination of Egs. (20) and (18) shows that the field
strength in the dielectric near the apex is twice that in the
conducting medium. The equation for E, in Eq. (20), to-
gether with Eq. (7), gives the surface-charge densities
near the apex,

Ps|9=o=€0€d72’§‘D1P_V3 ,

(21)

2 _
Pslo=—n/n=—€o€q 7-§D1P 13,

which show that the wall of the hole is negatively
charged while the top surface of the disk is positively
charged. From Egs. (18) and (21) it is clear that the field
strength and surface-charge densities become infinite

Z

FIG. 4. 3D plots of the distribution of the current flux com-
ponents (a) j,, (b) j,, and (c) the magnitude of the field E,,. Each
of these clearly shows a singularity at node (N,,M,, ).
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when p approaches zero with a singularity strength of 1.
Because of the unbound nature of the potential derivative
in this region, the usual FD formulas become inaccurate
for some physical parameters, such as energy and
current. However, by using a finer mesh around the
singular node [7], or using an eigenfunction potential ex-
pansion for the nodes near the singularity [8], we can
overcome this problem to some extent. These methods
may increase the accuracy, but they affect the speed of
convergency and make coding more difficult. Although
we do not use any special treatment for the singularity,
the accuracy of the simulated capacitance will not be
affected very much by it because errors introduced
around the apex will cancel each other to a large extent
because of the opposite signs of the surface charges. The
surface-charge densities for the 11 different hole radii are
shown in Fig. 5, where for simplicity we let €;=1. Clear-
ly, the magnitude of the singularity is decreasing while
the size of the hole is increasing, which implies that the
constant D, decreases also. The charge distribution on
the top surface of the disk is quite uniform far away from
the edge, and the asymptotic limits to the apex are quali-
tatively consistent with 2D analytical results.

Calculation of the capacitance of the disk can be done
without much more effort after finding the potential dis-
tribution. The capacitance is obtained from the summa-
tion,

AQ;

c.=>—, 22

s 2 29, (22)
where i runs along the interface, which includes the top
surface and the wall of the hole of the disk, AQ; is a
charge element, and ; is the corresponding potential.
On the other hand, the capacitance of the disk can be cal-
culated with Eq. (1), where S is only the top surface of the

N

Q.08

———

0.00

-0.08

0‘\

Surface charge density (Q/cm?)

FIG. 5. The charge densities along the interface between the
conducting medium and dielectric disk for different relative
sizes of hole. The index runs along the interface, and node no.
10 gives the location of the edge. The number of nodes on the
surface of the disk is reduced when the size of the hole becomes
larger.
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FIG. 6. Nonlinear least-squares fit (solid line) of Eq. (25) to
the scaled capacitance difference (®) from FD simulations.

disk. We have found that C is always larger than C,,
which is different from the Kirchhoff’s formula [1], where
the edge effect causes a larger capacitance. We introduce
a scaled function (f;) and a scaled variable (x),
C—C; S}, 3

fs c '~ s, ’ (23)
to display the effects of the relative hole size on the ca-
pacitance, where S, is the area of hole, and S, =S +S§), is
the total area of the disk including the hole, so x is in the
range (0,1). Figure 6 is a plot of logo(f;) vs logo(x),
from which it is evident that the curve shows a straight-
line section when x <0.3, which implies a power-law re-
lation between f; and x. Calculation of C; is quite accu-
rate when the size of the hole is small, but less accurate
when the size becomes larger because the number of
nodes on the surface becomes less. The asymptotic
behavior of f; is important for testing our mathematical
model, and can be easily found from the plot,

lim f, =0, limf,=1. (24)

When x =0, there is no hole and C =C;; when x =1,
there is no disk at all, and we assume that C; approaches
zero faster than C. To fit the numerical calculation of f,
we propose a simple mathematical model with Eq. (24) in
mind,

fn=p[1—(1—x)2=xP1+x", 0<x<1, (25

where p,,...,p, are the parameters to be fitted, and are
dimensionless since f; and x are dimensionless. The
power-law relation of Eq. (25) is based solely on curve
fitting, and implies no specific physics. A criterion for
determination of a mathematical model is that the model

TABLE 1. Parameters found from a NLS fit of Eq. (25) to the
data shown in Fig. 6.

p1=1.19+0.07
p3=0.61+0.04

p,=0.25+0.04
ps=0.55+0.03

requiring the smallest number of parameters is preferred
without sacrificing the quality of the fit. It is apparent
that the coefficient p, and exponent p, are mainly deter-
mined by the straight-line section, which is fairly accu-
rate, while the exponents p; and p, mostly describe the
rest of the curve. Equation (25) has been fitted to the
simulated data (f;) by a nonlinear least-squares (NLS) fit
using the Levenberg-Marquardt algorithm [9]. The fitted
result is displayed in Fig. 6, where the relatively large de-
viations between f,, and f; for points near x =1 may re-
sult from the relatively large computational errors at
these points. The parameters found from the fit are
shown in Table I, where all the exponents are less than
one.

To illustrate these results in a practical way, consider a
polycarbonate filter of thickness 10 ym and dielectric
constant 3.2 having 10° holes of diameter 4 um/cm?. The
capacitance of the system is about 196 pF/cm? when cal-
culated from Eq. (25) where as from the simple capaci-
tance formula, Eq. (1), it is about 248 pF/cm?, which
gives an error of about 25%.

Many types of systems display various parametric
power-law relations [10—12], which have been the subject
of some attention. The underlying physics of such
power-law behavior is still mostly unknown; however, in-
creasing numbers of these phenomena suggest a degree of
“universal behavior.” Mathematical models are often
utilized to describe the physical systems, and devising
models is a well-recognized technique, and has been wide-
ly used in data analysis. Although models which are
merely on the mathematical arguments are often under
criticism, they hold the potential to yield the new phys-
ics. The power-law dependence we have reported here
reflects the power-law behavior of the field near the edge
to some extent.

In summary, we have calculated the capacitance of a
dielectric disk with a conducting circular hole at the
center by a FD scheme. This method provides a simple
treatment for the interface between two dissimilar media
and the singularity at the apex of the edge of the hole.
Analytical and numerical results are consistent in the vi-
cinity of the singularity. The scaled difference in capaci-
tance between the results of the FD method and from the
simple parallel-plate-capacitance formula changes with
the relative size of the hole in a composite power-law re-
lation.

ACKNOWLEDGMENT

The authors thank the San Diego Supercomputer
Center for providing computer time.

[1] L. D. Landau, E. M. Lifshitz, and L. P. Pilaevskii, Electro-
dynamics of Continuous Media, 2nd ed. (Pergamon, New
York, 1984).

[21 W. R. Smythe, Static and Dynamic Electricity, 3rd ed.

(McGraw-Hill, New York, 1965).

[3]1 F. J. Asencor and M. Panizo, J. Comput. Phys. 95, 387
(1991).

[4]7. A. Weiss and T. G. Bryant, IEEE Trans. Microwave



3676 JIAN-ZHONG BAO AND CHRISTOPHER C. DAVIS 47

Theory Tech. 18, 595 (1970).

[5] U. Schendel, Sparse Matrices: Numerical Aspects with Ap-
plications for Scientists and Engineers (Ellis Horwood,
West Sussex, UK, 1989).

[6] A. R. Mitchell and D. F. Griffiths, The Finite Difference
Method in Partial Differential Equations (Wiley, New
York, 1980).

[711. S. Kim and W. R. Hoefer, IEEE Trans. Microwave
Theory Tech. 38, 812 (1990).

[8] D. H. Sinnott, G. K. Cambrell, C. T. Carson, and H. E.
Green, IEEE Trans. Microwave Theory Tech. 17, 464

(1969).

[9]1 W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T.
Vetterling, Numerical Recipes in C (Cambridge University
Press, Cambridge, England, 1988).

[10] J.-Z. Bao, C. C. Davis, and R. E. Schmukler, Biophys. J.
61, 1427 (1992).

[11]1K. L. Ngai, in Non-Debye Relaxation in Condensed
Matter, edited by T. V. Ramakrishnan and M. R. Lakshmi
(World Scientific, New Jersey, 1987).

[12] M. Schroeder, Fractals, Chaos, Power Laws (Freeman,
New York, 1991).



